
Leveraging Tactile Feedback for Robust In-Hand
Robotic Manipulation

William Wang and Philippe Wu

Abstract—Dexterous in-hand manipulation with high-DOF,
non-anthropomorphic hands remains a challenging task in
robotics. While prior approaches leverage sim-to-real transfer
and domain randomization to train a control policy, they often
ignore rich sensor data such as tactile signals available on
hardware due to the difficulty of replicating these signals in
simulation. In this work, we focus on the task of rotating a
lugnut object in a real robotic hand, a useful task for various
industrial cases. We propose a two-stage learning framework to
incorporate tactile sensing into our manipulation policies. We
first train an RL expert policy in simulation and deploy it on a
physical robot to collect RGBD, proprioceptive, and tactile data.
We then train a behavioral cloning (BC) policy to imitate the RL
expert. Through experiments, we show that our BC policy with
access to tactile data outperforms the RL expert in manipulation
robustness. This approach offers a path for leveraging rich sensor
data in manipulation without the need for full sensor simulation.

I. INTRODUCTION

A. Background

Training a robust policy for a highly dexterous robotic hand
remains a central challenge in robotics research, particularly
for tasks involving intricate manipulation. Notably, OpenAI
demonstrated the viability of transferring policies from simu-
lation to reality (sim2real) using domain randomization [4], but
their approach did not incorporate many on-hand sensors such
as tactile feedback due to the difficulty of replicating these
signals in simulation. They instead focused on pose estimation
and proprioceptive history. In contrast, we propose leveraging
tactile sensors in addition to other sensory modalities in our
policy inputs to enhance dexterous manipulation capabilities.

B. Problem Statement

The specific task we target is a lugnut rotation scenario.
The task is relatively straightforward: the robot hand must
spin a regular hexagonal prism, 40 mm in width, for as long
as possible without dropping it. Despite its simplicity, this
scenario captures crucial elements of dexterous manipulation,
namely, grasp stability, controlled rotation, and adaptive re-
gripping. Moreover, a robust policy must be able to resist
external disturbances, such as a push on the lugnut.

For manipulation, we use the ROAM Hand 3 (RH3), a
12-DOF, non-anthropomorphic robotic hand platform with
custom tactile sensors developed by Robotic Manipulation and
Mobility (ROAM) Lab at Columbia. If a policy has access
to the on-hand tactile signals, the robot can exploit tactile
information to estimate how the lugnut is being grasped and
which fingers are in contact. By interpreting tactile feedback,
the hand can better coordinate its fingers, allocating some

for support (holding up the lugnut) while others execute the
rotation.

Our training strategy begins by developing an initial base
policy in simulation, using IsaacGym as our platform. Due to
the difficulty of controlling a high-DOF, non-anthropomorphic
hand, this base policy is trained using RL and called the RL
expert. We train the policy using Proximal Policy Optimization
(PPO) with domain randomization. Importantly, the RL expert
relies only on the joint angles of the robot, the object’s z-
axis height, and binary contact data. Tactile signals are not
used due to the difficulty of simulating the signals accurately
in a simulation environment, so a binary contact estimate is
instead used as a substitute and estimated based on geometric
collision in simulation. On the real robot, this binary contact
is estimated from tactile signals. After obtaining a functional
policy in simulation, we deploy the RL expert on the real robot
and collect the corresponding tactile sensory data that emerge
from actual interactions. This creates a dataset that captures
how the tactile sensor readings evolve over time when the RL
expert controls the manipulations.

With this real-world dataset, we then train a new policy
via behavioral cloning that utilizes tactile signals in addition
to hand proprioception and RGBD data. By including tactile
feedback, we aim to improve robustness and grasp stability.
Tactile sensors provide localized information about contact
forces and finger–lugnut interactions, which can be invaluable
when the robot must maintain its hold on the lugnut while
rotating.

To evaluate performance, we define a “grab height,” repre-
senting the lugnut’s initial height above the ground at the start
of the trajectory. If this grab height is very high or very low,
the hand is barely holding on to the lugnut and must perform
active re-gripping or repositioning to achieve a comfortable
grasp. We measure how long the robot can manipulate the
lugnut without failure under different grab height conditions.
By comparing the original RL expert to the new tactile-
informed BC policy, we can quantify improvements in terms
of sustained rotations, grip robustness, and overall dexterity.

II. RELATED WORK

The task of in-hand manipulation has been studied exten-
sively. As mentioned in the introduction, OpenAI demon-
strated in-hand dexterity on real hardware by training a policy
via reinforcement learning completely in simulation [4]. Their
approach made use of extensive domain randomization to
bridge the sim2real gap. Even though the hand they used for
manipulation had built-in tactile sensors, they chose to ignore



them completely due to the difficulty of accurately simulating
tactile signals.

Another work [3] demonstrated in-hand manipulation using
tactile signals on a three-finger “TRX” hand. Their approach
involves a high-resolution instrument with dense tactile arrays,
which can detect tactile contact on individual patches. They
simulate this binary contact by drawing the same array on
meshes. However, their approach only works with binary
tactile contact, not raw signals.

For our project, we build on work done by the Robotic
Manipulation and Mobility (ROAM) Lab at Columbia. The
ROAM Hand 3 (RH3) from the ROAM Lab is a custom
hardware platform for studying manipulation equipped with
tactile, proprioception, and camera data. Similarly to OpenAI,
the RH3 makes use of a policy trained via reinforcement
learning that allows the hand to twist a lugnut. Both OpenAI
and the ROAM lab have yet to make use of rich sensor data
embedded in the hardware of the hand due to the difficulties
of modeling sensor data in simulation. Our goal is to use the
RH3 platform and the existing RL manipulation policy as an
expert to train a more robust policy through behavioral cloning
that directly makes use of the rich sensor data on the hand.

We draw inspiration for our policy model architecture
from BAKU [1]. BAKU is a transformer-based architecture
designed for multitask policy learning designed to take in
multimodal data for highly efficient training. BAKU encodes
multimodal inputs using modality-specific encoders which are
then fed through a transformer. The outputs of the transformer
goes into the action head which predicts the action at the
next time step. BAKU is trained via behavioral cloning where
the loss function is formulated as the distance between the
sequences of generated actions and the expert policy actions.

III. HARDWARE AND SIMULATION

A. RH3 Hardware

Fig. 1: CAD model of the ROAM Hand 3

The ROAM Hand 3 (RH3) as seen in figure 1 is a non-
anthropomorphic robotic hand developed by the Columbia
Manipulation and Mobility (ROAM) Lab. The hand features
4 fingers, each with 3 degrees of freedom for a total of 12
degrees of freedom. The fingers are each actuated with two
servos, the 2-DOF Dynamixel 2XC-430 and the Dynamixel
XC-330, which double as joint encoders for proprioceptive
data.

The hand is equipped with 3 cameras. Two fish eye cameras
are mounted on the side of the hand offering a side view. A
RealSense D405 RGBD camera is mounted in the palm of the
hand looking up, providing a measure of the z-axis height of
the lugnut on top of RGB images. Custom Spike-a-Tac tactile
sensors are equipped at the tip of each finger. The Spike-a-
Tacs are capacitor-based tactile sensors that convert pressure
into voltage signals. There are seven sensors in each finger for
a total of 28 channels on the hand.

B. Simulation

The simulator used to train the expert RL policy is Nvidia’s
Isaac Gym. Isaac Gym provides actuators with PD controllers
but without any trajectory generation. We tune the gains of the
physical Dynamixel servo controllers to match the trajectory
of the Isaac Gym actuators as much as possible.

IV. METHODS

A. Consideration of Approaches

Learning directly from raw tactile signals poses unique
challenges. We considered two alternatives before settling on
our final approach.

a) Tactile-prediction: Using rollouts from a PPO-trained
policy, we fit a lightweight neural network to predict tac-
tile readings from the current observation. Embedding this
network in the simulator lets us train a second policy that
consumes the predicted tactile feedback. Because the predictor
is accurate only near states visited by the original policy, its
estimates become unreliable during early exploration, degrad-
ing learning.

b) Online real-robot RL: We also explored online RL on
the physical hand, by collecting rollouts, updating the policy,
and repeating. This option demands extensive manual resets
after each failure and is prohibitively time-consuming for our
task.

c) Behavior Cloning: We therefore combine simulation-
based RL with privileged information and behavior cloning on
real-world trajectories as our final approach.

B. Reinforcement Learning Expert Policy

We adopt an asymmetric actor–critic framework with sep-
arate multilayer perceptrons (MLPs) for the actor and critic
[5]. Policies are optimized with Proximal Policy Optimization
(PPO) [6], using Generalized Advantage Estimation (GAE)
[7]. Due to the difficulty of simulating raw tactile signals,
we substitute tactile data with binary contact estimates. The
actor receives binary contact flags, current joint angles and set-
points, and object height, and outputs the target joint angles
for the next control step.

The agent is rewarded for spinning the object about a target
axis while keeping motion, effort, and contact forces low. We
clip the angular velocity to avoid runaway incentives, apply a
penalty to translational velocity vt so the object does not drift
as it spins, and use a pose-difference term to improve stability.
Effort and work penalties depend on the joint torques τ t. If



the object falls, we add an out-of-bounds penalty, and a hard-
force penalty discourages the hand from slamming the object.
At timestep t,

rt = clipvmax

(
ωt ·â

)
− ∥vt∥1 − ∥τ t∥22 − dt − Ft − ⊮OOB.

Here ωt is the object’s angular velocity (projected onto the
desired axis â); all other symbols appear directly in the
description above.

Domain randomization is applied to all physical and servo
parameters except the object’s centre of mass, mass, and
scale [8]. PID gains and the velocity/acceleration limits of
the Dynamixel servos are tuned to match simulation, further
reducing the sim-to-real gap. Hyper-parameters are reported
in Appendix table VII.

During hardware roll-outs, object height is estimated in real
time by a RealSense D405 depth camera embedded in the
palm; a textured test object enhances depth fidelity.

C. Data Collection

We collected lugnut manipulation data on the RH3 using
the RL policy, which serves as the expert for twisting the
lug nut. We placed the RH3 in a light box to isolate visual
disturbances in a controlled and reproducible manner. During
executing of the RL policy, we collect proprioceptive, RGBD,
and tactile data from the on-hand sensors in real time via ROS2
at 20 Hz. Upon failure of the policy (e.g. dropping the lugnut)
we manually reset the lugnut and continue to collect data.
We account for this in the data processing phase by slicing
out the range of indices consisting of failure cases. Across
each trial, we also sought to introduce visual variation within
our controlled environment. We change the orientation of the
hand in each trial so our policy can learn to be robust against
background noise and variation. Figure 2 shows camera data
collected from the hand during manipulation trials.

Fig. 2: On-hand data collection running the RL expert policy

After filtering, this preliminary dataset consists of about 18k
steps at 20 Hz for 15 minutes of manipulation.

We observed that the main failure cases for lugnut ma-
nipulation was the nut falling too low or too high in the
hand. The RL expert policy is sometimes able to recover from
these states, but unreliably. We curated an additional dataset
capturing this recovery behavior to make our policy more
robust to common failure modes. We ran the RL policy again
while introducing perturbations to the lugnut object by pushing

Fig. 3: On-hand data collection with perturbation

up or down during execution as seen in figure 3. Again, we
filtered data only for examples of successful recovery, resulting
in 47 examples and and around 26.5k steps at 20 Hz for an
additional 22 minutes of data. In total, our combined dataset
consisted of 44581 steps, or about 37 minutes of data. We
trained our policy on this combined dataset.

D. Tactile Signal Processing

1) Low Dimensional Tactile: The raw tactile signals from
the Spike-a-Tacs sensors are extremely noisy. We first calibrate
the signals by collecting 2000 steps of raw signals and then
grabbing the median. The median is subtracted from all
subsequent values. The tactile signals are then normalized
using a scaled sigmoid function. We chose an alpha value of
0.016 to support a range of [-137, 137], which was determined
by hand by looking at the distribution of tactile values in the
dataset.

α = 0.016

σ(z) =
1

1 + exp(−α z)

E. Behavior Cloning Policy Architecture

BAKU introduces a flexible Transformer-based architecture
for multi-modal observation [1]. We use the BAKU trans-
former backbone, but we introduce our own encoders.

1) Low Dimensional Encoders: Low dimensional data
is composed of the current joint positions and the
processed low dimensional tactile signals. A single fully
connected layer maps this input to the chosen represen-
tation dimension.

2) Image Encoder: A ResNet-18 backbone [2] processes
visual inputs. The ResNet-18 encoder is not pretrained.
The last layer of the encoder is replaced by another
fully connected layer that maps the input to the chose
representation dimension.

Detailed parameters the policy architecture are given in Ap-
pendix table VIII.

F. Training

We train our Behavior Cloning (BC) policy via a stan-
dard BC objective, where each demonstration trajectory τ =
{(ot, at)}Tt=1 consists of observations ot (RGBD, tactile read-
ings, robot joint angles) and expert actions at. Here, RGBD



data is drawn completely from the in-palm RealSense camera.
We ignore the side fish eye camera observations. We minimize
the mean-squared error between the expert trajectory and the
model predictions:

Let yt =
[
at:t+T1 ],

ŷt = πpolicy
(
ot−T2:t

)
=

[
a′t:t+T1

].

Then the training objective is simply:

Lpolicy = E(ot−T2:t, yt)∈D

∥∥∥ŷt − yt

∥∥∥2
Here, T1 denotes the prediction horizon, T2 denotes the
observation window, a denotes the action. The predictions ŷt
are obtained by passing the observation history ot−T2:t through
πT-Tac.

Our policy performs action chunking on the next 10 steps
and uses an observation window of 3 with no overlap. Thus,
we have T1 = 10 and T2 = 3 During rollout, the policy will
store a history of past predicted actions and predict actions
using temporal aggregation. Detailed training parameters and
setup are given in Appendix table VIII.

We train two versions of the policy, one where ot consists
of [RGBD, tactile readings, robot joint angles] and another
where ot is only [tactile readings, robot joint angles]. We call
the first policy BC (with RGBD) and the second policy BC
(without RGBD).

G. Evaluation

We reserve 10% of the trajectories for evaluation. For each
withheld trajectory, the policy is rolled out step-by-step and its
predicted actions are compared with the expert’s using mean-
squared error (MSE).

V. EXPERIMENTS

A. Setup

We assess our policies by evaluating their robustness. In our
context, we define robustness as the ability to rotate the lugnut
object without failure. Failure is defined as a mishandling of
the lugnut. Mishandling can be further classified into two
types. First is dropping where the lugnut falls. This case
mainly occurs when the lugnut drops too low in the hand.
Second is tipping, where the fingers lose grip of the lugnut
when it rises too high. Here, the lugnut becomes oriented in
the incorrect axis and the hand is unable continue turning the
lugnut.

To test these policies, we measure how long each policy
can manipulate the lugnut before failure occurs. The speed of
failure during an episode is highly dependent on the starting
position of the object. To systematically test this, we designed
a custom adjustable jig as seen in figure 4. The jig ensures that
the starting position and orientation of the object is the same
among all trials. The jig is also adjustable in the z-coordinate
with 10 different height settings (labeled 0-9), allowing us to
start the object in abnormally high positions where tipping is
likely or abnormally low positions where dropping is likely.
These settings allow us to artificially induce a near-failure state

Fig. 4: Custom jig for consistent object starting position with
variable z heights

at the start of the episode and evaluate how effective a policy
is able to recover.

Fig. 5: Five height settings (9, 8, 4, 2, 1) from left to right.
9 and 8 are high near-failure states where tipping is likely, 4
is the normal control height, and 2 and 1 are low near-failure
states where dropping is likely.

We conducted manipulation trials using five different height
settings with five trials each. Figure 5 shows the five different
height settings on the hand. For each trial, we measure the
seconds of policy roll out until failure. We cap our trials to
300 seconds where we automatically consider the episode a
success.

We perform the experiment on the RL expert, the BC
(without RGBD) policy, and the BC (with RGBD) policy. The
RL expert policy serves as the baseline to which we compare
our BC policies.

B. Results

Our results are plotted in figure 6. The raw data and averages
can be found in Appendix tables I, II, III, IV, and V. We note
that the averages shown in the figures are a low estimate of the
true average. For trials that did not fail, we artificially stopped
the episode at 300 seconds due to time constraints. The actual
manipulation time before failure could have been much longer,
pushing the true average for some of these trials higher.

From our results, we see that our BC (with RGBD) policy
consistently outperformed our BC (without RGBD) policy. We
also see from the results that the BC (with RGBD) policy
performed similarly to the RL expert policy at height settings 4
and 8, but outperformed the RL expert by a significant margin
at extreme heights 9, 2, and 1. These results indicate that our



Fig. 6: Experiment results (number of seconds until failure) of all five test heights on each of the three policies are plotted
above. The bars show the average time across all five trials. The dotted line at 300 seconds indicate that a trial reached the
300 second threshold and was manually stopped.

BC (with RGBD) policy is more robust than the RL expert
as it is better able to recover from near-failure states on both
high and low height extremes. 1

C. Discussion

The success of the BC (with RGBD) policy over the
BC (without RGBD) policy indicates that image and depth
information is important to the robustness of the manipulation.
The RealSense camera gives an accurate estimate of depth
of the z-axis height of the lugnut for both the RL and the
BC policies. These results show that knowledge of the lugnut
height is important for the robustness of the policy. Intuitively,
this result makes sense as height is a main determining factor
of when the lugnut is close to a failure state.

The improved performance of our BC (with RGBD) policy
over the RL expert at extreme height settings suggests that
access to rich tactile data allows the BC policy to better recover
from near-failure cases when compared to the binary tactile
information that the RL expert has access to. We hypothesize
that the rich tactile information from sensors allows our BC
model to have better knowledge of the current state compared
to the RL expert, improving robustness.

We acknowledge a few weaknesses in our experiment.
First, as mentioned previously, our calculated averages are a
low estimate for the true average manipulation time before
failure across our trials. For each height setting, the best
performing trial by average seconds also had the greatest
number of instances where manipulation did not fail within
300 seconds, so including the true time is unlikely to change

1Video comparison of the RL expert policy and the BC (with RGBD) policy
is available here: https://www.youtube.com/watch?v=ldG13yCEtFQ

the performance rankings. That is, the average manipulation
time for the best performing policy across all height settings
is a conservative estimate when compared to the other policies
within that same experiment. Second, the standard deviation
between trials is high, so five trials does not provide confidence
that the results accurately represent the true means. Given
more time, we propose performing a much larger number
of trials to ensure that the differences the policies are more
statistically significant.

D. Ablation Studies
To gauge real-world robustness we ablated sensing modal-

ities and measured how long the robot could keep the object
aloft (mean ± s.d. over three trials; initial drop height = 4 cm).

Policy Sensor ablation Survival (s)

Baseline RL Expert Palm Depth covered 7.0± 0.6
BC (w/ RGBD) Palm RGB–D covered 15.5± 0.8
BC (w/o RGBD) Tactile signals zeroed 11.3± 0.5
BC (w/ RGBD) Normal lighting (no light-box) 203.6± 0.4

Covering the palm RGB–D camera sharply degrades vision-
centric policies, yet the multisensory BC (w/ RGBD) variant
still more than doubles baseline performance. Zeroing tactile
inputs weakens the BC (w/o RGBD) model, confirming its de-
pendence on contact cues. Surprisingly, BC (w/ RGBD) shows
no loss outside the light box, indicating good generalization to
visual disturbances. Overall, robustness is preserved provided
every modality the policy expects remains available.

VI. CONCLUSION

Our work demonstrates a way to train a tactile-based ma-
nipulation policy using using behavioral cloning by distilling

https://www.youtube.com/watch?v=ldG13yCEtFQ


an RL expert teacher policy trained with PPO and Domain
Randomization. By running rollouts with the teacher policy
on real hardware, we can train a student policy that utilizes
the rich tactile signals generated. Running experiments, we
saw an improvement in robustness when we incorporating
tactile signals, allowing our policy to outperform the RL
expert teacher. However, we are still limited by the initial
performance of the teacher policy. If the teacher policy is
unable to produce acceptable or good states initially, our
behavior cloning policy would have no dataset to train with.
To address this, we are working on incorporating offline Q-
learning to do RL finetuning on our policy. Offline Q-learning
will allow us to leverage both the bad and good states produced
by our policy.

VII. ACKNOWLEDGMENTS

We would like to thank Zhanpeng He and Joaquin Palacios
for allowing us to use the RH3 platform, for their previous
work on the RH3 hardware and RL expert policy, and for
their guidance and insight throughout this project.

REFERENCES

[1] Siddhant Haldar, Zhuoran Peng, and Lerrel Pinto. Baku:
An efficient transformer for multi-task policy learning.
arXiv preprint arXiv:2406.07539, 2024.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, 2016.

[3] Wenbin Hu, Bidan Huang, Wang Wei Lee, Sicheng Yang,
Yu Zheng, and Zhibin Li. Dexterous in-hand manipulation
of slender cylindrical objects through deep reinforcement
learning with tactile sensing, 2023. URL https://arxiv.org/
abs/2304.05141.

[4] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafał Józefowicz, Bob McGrew, Jakub Pachocki,
Arthur Petron, Matthias Plappert, Glenn Powell, Alex
Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter
Welinder, Lilian Weng, and Wojciech Zaremba. Learning
dexterous in-hand manipulation. CoRR, 2018. URL
http://arxiv.org/abs/1808.00177.

[5] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wo-
jciech Zaremba, and Pieter Abbeel. Asymmetric actor
critic for image-based robot learning, 2017. URL https:
//arxiv.org/abs/1710.06542.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

[7] John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-dimensional continu-
ous control using generalized advantage estimation, 2018.
URL https://arxiv.org/abs/1506.02438.

[8] Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from

simulation to the real world. CoRR, abs/1703.06907, 2017.
URL http://arxiv.org/abs/1703.06907.

https://arxiv.org/abs/2304.05141
https://arxiv.org/abs/2304.05141
http://arxiv.org/abs/1808.00177
https://arxiv.org/abs/1710.06542
https://arxiv.org/abs/1710.06542
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1703.06907


APPENDIX

TABLE I: Performance at Height 9

Trial RL BC (no RGBD) BC (w/ RGBD)
1 102 300 300
2 134 164 234
3 100 47 26
4 66 31 300
5 112 62 31

Average 102.8 120.8 178.2

TABLE II: Performance at Height 8

Trial RL BC (no RGBD) BC (w/ RGBD)
1 194 72 132
2 300 75 77
3 187 23 121
4 153 27 279
5 5 109 203

Average 167.8 61.2 162.4

TABLE III: Performance at Height 4

Trial RL BC (no RGBD) BC (w/ RGBD)
1 300 21 46
2 300 26 300
3 137 255 300
4 102 20 33
5 31 42 300

Average 174 72.8 195.8

TABLE IV: Performance at Height 2

Trial RL BC (no RGBD) BC (w/ RGBD)
1 8 76 300
2 16 10 15
3 11 12 300
4 13 9 275
5 19 11 12

Average 13.4 23.6 180.4

TABLE V: Performance at Height 1

Trial RL BC (no RGBD) BC (w/ RGBD)
1 5 4 7
2 35 7 300
3 6 11 5
4 5 6 6
5 7 6 6

Average 11.6 6.8 64.8

Input feature Critic Actor

Hand joint position ✓ ✓
Hand joint velocity ✓ ×
Target joint position ✓ ✓
Fingertip contact force ✓ ×
Object position ✓ ×
Object height (z) ✓ ✓
Object orientation ✓ ×
Object linear velocity ✓ ×
Object angular velocity ✓ ×
Target orientation ✓ ×
Target orientation ∆ ✓ ×
Joint torque ✓ ×
Fingertip contact (bool) ✓ ✓
Fingertip contact position ✓ ×
All contacts (bool) ✓ ×
Object keypoints ✓ ×

TABLE VI: Observation features available to the privileged
critic and to the actor network.

Parameter Meaning Value

γ Discount factor 0.99
τ GAE–λ / target smoothing 0.95
Learning rate Adam step size 2× 10−4

KL threshold Early-stopping KL limit 0.016
Rollout horizon (T ) Steps collected per update 8
Minibatch size Samples per gradient step 32 768
Actor epochs (Eπ) Passes over data for policy 5
Critic epochs (EV ) Passes over data for value 8
Clip coefficient (ϵ) PPO ratio clip 0.2
Entropy coefficient Exploration regulariser 0
Gradient-norm clip ∥g∥max 1.0

TABLE VII: Baseline RL expert policy hyper-parameters.

Parameter Value

Batch size 64
Number of Iterations 10,000
Learning Rate 1e-4
Action horizon 10
History length 3
Representation Dimension 512
Head Dimension 256

TABLE VIII: BAKU parameters


	Introduction
	Background
	Problem Statement

	Related Work
	Hardware and Simulation
	RH3 Hardware
	Simulation

	Methods
	Consideration of Approaches
	Reinforcement Learning Expert Policy
	Data Collection
	Tactile Signal Processing
	Low Dimensional Tactile

	Behavior Cloning Policy Architecture
	Training
	Evaluation

	Experiments
	Setup
	Results
	Discussion
	Ablation Studies

	Conclusion
	Acknowledgments
	Appendix

