

CSEE W4824 Final Project:
P6-Style Out-of-Order RISC-V Processor

Group 04, Cache Course:

Diwa Bhusal, Mateo Nery, William Wang, Kuan Zhang
Github: CS4824-Final-Project-Cache-Course

1. Introduction

This is the project report for a P6-style Out of Order Processor that handles RISC-V Instructions,
designed by Diwa Bhusal, Mateo Nery, William Wang, and Kuan Zhang as part of the CSEE
W4824: Computer Architecture course at Columbia University. The report that follows will
describe the implementation, features, and performance of our Processor, as well as attempted
features, challenges, and future improvements for our design.

2. Design Details

The processor follows a single-issue, out-of-order P6 architecture with a top module that wires
together all six stages of the pipeline: Fetch (IF), Dispatch (ID), Issue (IS), Execute (EX),
Complete (CP), and Retire (RT). Below is a diagram detailing the structure of our processor
pipeline:

1

https://github.com/MNery29/CS4824-Final-Project-Cache-Course/tree/main/csee4824-project-4

​

2.1 Fetch Stage

The fetch stage (IF) fetches one instruction from memory in order, via the Instruction Cache. In
the case that the I-Cache is unable to return valid data to the fetch stage, a stall signal is asserted
to pause the pipeline downstream. The stage outputs a packet containing the fetched 32-bit
instruction, the current and next PC values, and whether the packet contains valid information.
This packet is then shared down the pipeline to the dispatch stage.

2.2 Dispatch Stage

The dispatch stage (ID) is responsible for decoding the instruction packet sent from the fetch
stage and assigning correct inputs to the Map Table, LSQ, Re-order Buffer (ROB), and
Reservation Station (RS). This stage then identifies any structural hazards detected in the ROB,
RS, or LSQ, and forwards those signals downstream appropriately. When entering this stage, an
instruction is assigned a unique tag, typically a ROB tag, that acts as a physical register
identifier. The tag replaces the destination architectural register and allows out-of-order
execution by eliminating false dependencies (WAR and WAW hazards). Each source operand is
resolved instantaneously from available values or preceded by dependency tags until the value is
broadcast using the common data bus (CDB). Operand readiness is dynamically
monitored—when the CDB broadcasts a result, all RS entries waiting for that tag latch the
corresponding value and set their readiness flags. Instructions in the RS are always filtered
through each cycle. If both operands are available and the required functional unit is free, an
instruction is marked for issue. At the same time, each instruction is loaded into the reorder
buffer in program order. Upon an instruction completing execution and its result being placed
onto the CDB, the ROB marks the corresponding entry as complete. Instructions retire in a
first-in-first-out fashion: the head pointer of the ROB advances when the oldest instruction is
both valid and complete. In the event of a branch misprediction, ROB has been written to trigger
a pipeline flush and recover register mapping state to a checkpointed state stored at dispatch
time. Below is a description of the functions of each unit within the dispatch stage:

2.2.1 Re-order Buffer

The Re-order Buffer (ROB) contains all incoming dispatch information, represented as a
32-entry circular queue. It is responsible for maintaining in-order instruction retirement using the
head pointer to indicate the next instruction to retire, and the tail pointer indicates the next entry.
Upon receiving valid data from the dispatch stage, the ROB inserts the new instruction into the
tail and tracks the destination register, opcode, and computed result when available. Upon

2

instruction completion, the ROB receives the result broadcast from the Common Data Bus
(CDB), and the entry is marked as ready, to then retire the instruction once it reaches the head of
the ROB. The ROB is further integrated with the LSQ to track store instructions, marking
whether stores are ready to be committed. Using an extra bit to track ROB full logic, the ROB
can send out a stall signal to the pipeline to halt incoming dispatches when the buffer is at
capacity.

2.2.2 Map Table

The Map Table contains 32 entries, enabling register renaming by containing ROB tags to enable
out-of-order execution. Upon dispatch, the map table assigns a new ROB tag to the received
data, marks it as not ready, and indicates the register is now mapped to an in-flight instruction.
The map table further listens out for a CDB broadcast of a completed instruction, to then mark
the instruction as ready through updating the ready_in_rob bit and passing this information to the
ROB to indicate instruction readiness. Upon retirement, the map table clears the entry associated
with the retired instruction.

2.2.3 Reservation Station

The Reservation Station (RS) holds decoded instructions awaiting their operands, and enables
dynamic scheduling and register renaming. Upon dispatch, an instruction is loaded into the RS if
an entry is available. The RS stores the instruction with the associated ROB tag if the operands
are not yet available. The RS listens for the CDB to broadcast the operands for an entry, and
allows for the issue stage to determine if an instruction is ready to be passed to execution. Once
an instruction has been issued and accepted by its corresponding Functional Unit (FU), the RS
entry is cleared. Our initial working pipeline utilized a single-entry RS due to integration issues,
but was later updated to a multi-entry version with entries reserved for specific functional units.
We later describe this situation in the Challenges section of our report.

2.3 Issue Stage

The issue stage (ID) is responsible for selecting a ready instruction from the Reservation Station
and issuing it to an available FU. The stage receives valid instructions from the RS, determines if
a FU is available, and stalls in the case that no FU is available. The issue stage also informs the
reservation station which entry has been issued. This element is further utilized in our
multi-entry version of the pipeline, ensuring that multiple entries can store instructions to be
executed.

3

2.4 Execute Stage

The execute stage (EX) is responsible for all logical and arithmetic operations via the FUs. Our
initial design utilized a single ALU and the Conditional Branch module for all computations, but
was later expanded to include an additional ALU and an 8-stage Multiplier. In this expanded
version of the execute stage, both ALUs were responsible for branches and arithmetic, except for
multiplication. The Multiplier is capable of handling both signed and unsigned multiplication,
and its pipelined nature allows a new input every cycle. When a unit finishes execution, the
computed result is stored in a packet that is then sent to the complete stage and is eventually
broadcast from the CDB. If the instruction is a memory operation, it is instead routed to the LSQ
for handling. Our initial pipeline used a single signal to track whether the ALU was busy and
required stalling, while the updated pipeline was able to track the status of all three units and
determine which instructions were ready to send to the complete stage, with arbitration logic
being used to prioritize multiplication instructions over ALU results when forwarding. The
differences in the execute stage will further be discussed in our Challenges section of the report.

2.5 Completion Stage

The completion stage (CP) receives execution results from both our ALU pipeline and LSQ, and
arbitrates which result gets broadcast via the Common Data Bus. The Common Data Bus (CDB)
takes results from the functional units and gives priority to the LSQ when broadcasting results.

2.5 Retire Stage

The retire stage (RT) is responsible for committing completed instructions in program order, and
writing back to the register file, as well as handling branch mispredictions and exceptions. The
retire stage receives input from the ROB on a completed instruction and determines if the
instruction is a memory operation or a branch instruction. If the instruction is a memory
operation, the retire stage validates the instruction and coordinates with LSQ for final memory
commit. If the instruction is a branch instruction, the retire stage determines if the instruction
was a mispredict and asserts signals to ensure the pipeline is cleared. If the instruction is neither
a branch nor a memory instruction, the retire stage writes the result to the register file and
ensures the ROB and map table are cleared accordingly.

4

3. Advanced Features

Beyond the baseline out-of-order pipeline, our design implemented a set of advanced
architectural features intended to improve the performance and correctness of the processor.
Below, we detail those features:

3.1 Load-Store Queue

Our Load-Store Queue (LSQ) was implemented to handle in-flight memory operations in the
out-of-order pipeline. Our LSQ is unified and contains 8 entries, each storing either a load or a
store. Furthermore, the LSQ was built with both blocking and non-blocking configurations,
though issues with the non-blocking configuration led our team to complete testing with the
blocking implementation. Using a circular queue structure similar to the ROB, each entry in the
LSQ tracks the validity of its store data, the address, and retirement status for stores. Memory
operations at the head of the queue are only retired once marked as ready. The LSQ regulates
interaction with the D-Cache using a memory arbitration scheme, and our LSQ allows for
speculative loads to post results to dependent instructions through the CDB. This speculation
allows the execute stage to avoid stalling due to unresolved memory instructions, to improve
CPI.

3.2 D-Cache Improvements

Our directly mapped, non-blocking D-Cache implementation was updated with a Write-back
policy with dirty tracking to more effectively handle memory instructions with the LSQ.
Incoming memory addresses are split into their tag, index, and offset fields, and the D-Cache can
evict dirty lines upon mispredicts. Missed requests are tracked using the tag-to-address mapping
table to avoid redundant loads and overwrites. If a cache line is marked as dirty and a new line
maps to the same index, the dirty line is written back to memory before replacing it, and the
D-Cache can use write-back upon halts and misses to ensure dirty data is flushed.

3.3 Speculative Execution and Branch Misprediction Recovery

Although our branch prediction implementation was disabled due to challenges upon program
testing, the pipeline supports speculative execution with a misprediction recovery mechanism in
the backend. Mispredicted branches are trapped by the retire stage, which checks predicted
resolutions against expected ones. A Flush signal is sent to the pipeline upon misprediction,
allowing the pipeline to recover and resume correct execution.

5

4. Attempted Features

Due to time constraints, some advanced features were attempted but were unable to be fully
integrated into our pipeline. However, we believe that the effort put into these features makes
them worth mentioning, and we describe those features and future opportunities for development
below.

4.1 Fully Featured Branch Prediction Stack

Beyond the initial branch prediction requirements, a more advanced branch prediction was
attempted using a Branch Target Buffer (BTB), 2-bit saturating counters, and a Return Address
Stack (RAS). This work can be found in our repository under the branch_predict branch. Due to
the complexity of recovery logic and control path complexity with these advanced features lying
outside our time constraints, this attempt was not integrated into the final pipeline. Future work
could involve fully integrating the improved BTB and RAS, with more sophisticated branch
prediction schemes and control flow handling.

4.2 Z-Cache

Beyond the I-Cache and D-Cache, our team had planned and built a Z-Cache module to improve
the memory hierarchy of our model, via implementing a more associative, flexible, and
cache-efficient data cache based on the Z-Cache architecture described in "The ZCache:
Decoupling Ways and Associativity" by Sanchez and Kozyrakis (MICRO 2010). Although this
module was not fully integrated due to time constraints and cache challenges during testing, it
demonstrates our forward thinking and understanding of advanced architectures, and would be
implemented in future updates to the design. The Cache would be designed with 8-way
associativity, non-blocking, least recently used eviction policy, and a 3-way H3 universal hash
family for decoupled set indexing, implemented in the h3hash module in our repository.

6

5. Challenges and Bugs

During the final development and testing phase of the processor, many bugs and challenges were
encountered. We discuss some of the challenges, bugs, and potential solutions and improvements
below.

5.1 Multi-Entry Reservation Station and Functional Unit Challenges

During our final integration for testing, our team encountered challenges with issuing
instructions due to signal mixups in our multi-entry reservation station and multiple functional
units. Given the limited time for testing and integration challenges, our team decided to prioritize
successful program completion over the inclusion of these features. However, shortly after
submitting our final processor design, our team was successful in uncovering the source of the
errors within our multi-entry model, namely a signal mixup within the stalling logic of the
pipeline and a clock desync within the multiplication module. We were able to fix these errors
and managed to complete some testing and analysis with this updated pipeline, which will be
discussed later in the performance analysis section of the report.

5.2 D-Cache Arbitration

While integrating our I-Cache and D-Cache with the memory module, one challenge we
encountered was the timing desync between modules. Namely, the memory module request and
response were not available to be seen by both caches, resulting in challenges with arbitration
and timing. The timing aspect was particularly challenging for our team, as while most module
features within the caches were based on the positive edge, the arbitration required checking
values on the negative clock edge, creating issues with several C programs due to this timing
desync. In future implementations, we hope to resolve these issues to avoid errors in the memory
due to simultaneous cache requests based on desync.

5.3 D-Cache Write-back Halt Timing

While our D-Cache structure had write-back implemented, halting occasionally caused issues
within C programs due to write-back on dirty cache lines, causing errors. This resulted in some C
programs with mismatched memory outputs, which is a bug we plan to fix in future
implementations.

7

Overall, we believe that while our pipeline faced several problems, the work that we were able to
complete indicates our ability to resolve these challenges in the future.

6. Synthesis

Our team used Synopsys to check that the processor was synthesizing properly while minimizing
time spent on issues in synthesis. We implemented the following synthesis test strategy:
Individual modules were tested for synthesis initially, with a test_synthesis.sh script created to
test the modules. The script first checked whether the module passed its testbench and created its
.out file. Then, the module was synthesized to compare the synthesized output against the
testbench, and Make Slack was called to check timing violations.

7. Performance Analysis

For our testing strategy, our team began with the smaller module strategy described above, and
several modules were grouped for testing. This included the ROB and RS, as well as the dispatch
stage, ROB, and map table, using combinational test benches to observe their combined
integration. With numerous debug wires and display statements used to dump outputs as well as
data between units, our team was able to improve our ability to identify input mismatches or
internal unit errors during integration testing. For smaller module tests, the VCS waveform
compiler was used, but due to the large number of signals within the pipeline, we relied mostly
on internal debug statements for larger integration tests. After our initial testing was successful,
we adjusted the cycle timing to the required values to ensure proper functionality for programs.
Below is an analysis of the initial version of our pipeline, as well as the testing for our updated
version and a comparison of performance between the two versions.

7.1 Initial Pipeline CPI and D-Cache Utilization

Below is the analysis of the initial processor metrics, covering its CPI, D-Cache hit and miss
rates, LSQ utilization, and ROB utilization. Notably, our CPI average was 10.3, with the best
CPI being 3.8 on mult_no_lsq.s and its worst being 30 on halt.s. Notably, this average CPI was
likely caused due to the large spikes in CPI for halt.s and matrix_mult.s. Figure 2. Covers the
CPI results for every test program.

8

Additionally, we considered the correlation between CPI and D-Cache utilization as a likely
source of outliers, and Figure 3 contains our findings on the D-Cache utilization per program.
Notably, several of the higher spikes in CPI were correlated with D-Cache utilization, and we
investigated this correlation by observing D-Cache hit and miss rates as shown in Figures 4 and
5, respectively.

9

From figures 4 and 5, the mean was 51.5% hit rate, with the best being 99.8% in
search_and_sort.s. We measured the D-Cache utilization based on the percentage of space in the
D-Cache that was occupied by valid cache lines. A similar approach was used for measuring
LSQ and ROB utilization, shown in Figures 6 and 7, respectively.

From both Figures 6 and 7, mergsort.s had a notably high cache usage, which correlated with a
higher CPI. This correlation indicates that the high usage of caches may have meant a large
number of stalls due to both LSQ and ROB being full. In the future, we would further like to
explore how adjusting the sizes of both LSQ and ROB will affect program results.

7.2 Initial Pipeline CPI and D-Cache Utilization

Additionally, we were able to obtain test data for several programs with the updated pipeline that
utilized multiple functional units and multiple RS entries, and compared several metrics between
the baseline pipeline and the updated pipeline. In Figure 8, we compared the CPI of both
pipelines, as displayed below. For the updated pipeline, the average CPI was 10.6, with the best
being 3.8 for evens_long.s and worst being 30 for halt.s. Notably, the height of halt.s’ CPI
indicates that other spaces in the pipeline would need optimization to reduce CPI, outside of the
functional units. However, we did notice several programs observed lower CPI, and several
programs increased their CPI. This may be because the pipelined multiplier increases the number
of cycles per multiplication. However, the pipelined multiplier’s benefit comes from its ability to
reduce requirements for cycle time, and future tests will focus on observing the new optimal
clock cycle time.

10

We further tested the LSQ and ROB usage for the updated pipeline and compared it against our
baseline. The results of that testing are shown in Figures 9 and 10 below. In both cases, we
observed higher utilization of the ROB and LSQ, confirming our hypothesis that the longer
number of cycles used for the pipelined multiplier resulted in higher occupation of the LSQ and
ROB, resulting in longer wait times for instructions and likely increasing CPI.

11

8. Future Work and Involvement

8.1 Future Work

While our team was not able to complete all the features we had initially planned for our design,
we look forward to working on the following features and improvements in the future:

●​ Fix .c program bugs: We hope to debug several issues occurring during the .c program
testing, and aim to work on resolving some of the timing issues we identified that may be
the source.

●​ Full integration of attempted features: Our team worked hard on several advanced

features, such as improved caches and advanced branch prediction methods. The features
we described in the Attempted Features section of this report would be some of the first
steps to take in improving the performance of our processor

●​ Superscalar Implementation: At the beginning of this project, our team had hoped to

complete a superscalar implementation of our design. We had built initial packets and
stages with this feature in mind. However, the complexity of superscalar and the timing
constraints we encountered required us to discard this feature. In the future, we would
aim to implement a 2-way superscalar design into our processor and update our modules
as needed.

8.2 Involvement

With a smaller team that had no prior SystemVerilog experience, we knew this project would be
challenging. Yet during the timeline of our project, our team faced several unexpected challenges
both inside and outside the scope of this course that further pushed our team to the limits of our
capabilities. Nevertheless, our team persevered and built a design we are proud of, and truly put
incredible effort into making this project happen. While it is difficult to describe the exact
percentage of involvement on different features of the project due to several early modules being
full group efforts, such as the ROB and RS, below is a brief detailing of the strengths each
teammate contributed to:

●​ Diwa Bhusal contributed significantly to the testing, integration, and synthesis checks for
our design and made significant contributions to the ROB, map table, and reservation
station.

12

●​ Mateo Nery made the primary designs of the complete, retire, fetch, and issue stages, as
well as the ROB, RS, and implementation of multiple FUs into the execute stage, as well
as updating the multiplier for unsigned and signed instructions.

●​ William designed the LSQ and D-Cache and made major progress on the integration of
the pipeline, especially with the multi-entry RS and multiple functional units. He
contributed significantly to the debugging and testing of full pipeline programs.

●​ Kuan Zhang made significant contributions to the execute and dispatch stage, and
assisted significantly in helping integrate the full pipeline.

9. Conclusions and Acknowledgements

We have implemented a P6-style Out of out-of-order processor that handles RISC-V Instructions.
We were able to pass all assembly cases and several .c programs, indicating that most of our
design features were functional, but with some bugs still to be found. Additionally, our team at
the time of submission was still debugging the multi-entry RS and multiple functional unit
design, but was able to complete it shortly after submission and presented initial data findings
above. In the future, we hope to continue debugging the design, implementing the attempted
features, and adding new advanced features.

We would like to express our gratitude to Professor Khan, Matthew Weingarten, and Michael
Grieco for their guidance and support throughout the project.

13

