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1. Introduction 

This is the project report for a P6-style Out of Order Processor that handles RISC-V Instructions, 
designed by Diwa Bhusal, Mateo Nery, William Wang, and Kuan Zhang as part of the CSEE 
W4824: Computer Architecture course at Columbia University. The report that follows will 
describe the implementation, features, and performance of our Processor, as well as attempted 
features, challenges, and future improvements for our design.  
 
2. Design Details 

The processor follows a single-issue, out-of-order P6 architecture with a top module that wires 
together all six stages of the pipeline: Fetch (IF), Dispatch (ID), Issue (IS), Execute (EX), 
Complete (CP), and Retire (RT). Below is a diagram detailing the structure of our processor 
pipeline: 
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2.1 Fetch Stage 
 
The fetch stage (IF) fetches one instruction from memory in order, via the Instruction Cache. In 
the case that the I-Cache is unable to return valid data to the fetch stage, a stall signal is asserted 
to pause the pipeline downstream. The stage outputs a packet containing the fetched 32-bit 
instruction, the current and next PC values, and whether the packet contains valid information. 
This packet is then shared down the pipeline to the dispatch stage.  
 
2.2 Dispatch Stage 
 
The dispatch stage (ID) is responsible for decoding the instruction packet sent from the fetch 
stage and assigning correct inputs to the Map Table, LSQ, Re-order Buffer (ROB), and 
Reservation Station (RS). This stage then identifies any structural hazards detected in the ROB, 
RS, or LSQ, and forwards those signals downstream appropriately. When entering this stage, an 
instruction is assigned a unique tag, typically a ROB tag, that acts as a physical register 
identifier. The tag replaces the destination architectural register and allows out-of-order 
execution by eliminating false dependencies (WAR and WAW hazards). Each source operand is 
resolved instantaneously from available values or preceded by dependency tags until the value is 
broadcast using the common data bus (CDB). Operand readiness is dynamically 
monitored—when the CDB broadcasts a result, all RS entries waiting for that tag latch the 
corresponding value and set their readiness flags. Instructions in the RS are always filtered 
through each cycle. If both operands are available and the required functional unit is free, an 
instruction is marked for issue. At the same time, each instruction is loaded into the reorder 
buffer in program order. Upon an instruction completing execution and its result being placed 
onto the CDB, the ROB marks the corresponding entry as complete. Instructions retire in a 
first-in-first-out fashion: the head pointer of the ROB advances when the oldest instruction is 
both valid and complete. In the event of a branch misprediction, ROB has been written to trigger 
a pipeline flush and recover register mapping state to a checkpointed state stored at dispatch 
time. Below is a description of the functions of each unit within the dispatch stage:  
 
2.2.1 Re-order Buffer  
 
The Re-order Buffer (ROB) contains all incoming dispatch information, represented as a 
32-entry circular queue. It is responsible for maintaining in-order instruction retirement using the 
head pointer to indicate the next instruction to retire, and the tail pointer indicates the next entry. 
Upon receiving valid data from the dispatch stage, the ROB inserts the new instruction into the 
tail and tracks the destination register, opcode, and computed result when available. Upon 
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instruction completion, the ROB receives the result broadcast from the Common Data Bus 
(CDB), and the entry is marked as ready, to then retire the instruction once it reaches the head of 
the ROB. The ROB is further integrated with the LSQ to track store instructions, marking 
whether stores are ready to be committed. Using an extra bit to track ROB full logic, the ROB 
can send out a stall signal to the pipeline to halt incoming dispatches when the buffer is at 
capacity.  
 
2.2.2 Map Table 
 
The Map Table contains 32 entries, enabling register renaming by containing ROB tags to enable 
out-of-order execution. Upon dispatch, the map table assigns a new ROB tag to the received 
data, marks it as not ready, and indicates the register is now mapped to an in-flight instruction. 
The map table further listens out for a CDB broadcast of a completed instruction, to then mark 
the instruction as ready through updating the ready_in_rob bit and passing this information to the 
ROB to indicate instruction readiness. Upon retirement, the map table clears the entry associated 
with the retired instruction.  
 
2.2.3 Reservation Station 
 
The Reservation Station (RS) holds decoded instructions awaiting their operands, and enables 
dynamic scheduling and register renaming. Upon dispatch, an instruction is loaded into the RS if 
an entry is available. The RS stores the instruction with the associated ROB tag if the operands 
are not yet available. The RS listens for the CDB to broadcast the operands for an entry, and 
allows for the issue stage to determine if an instruction is ready to be passed to execution. Once 
an instruction has been issued and accepted by its corresponding Functional Unit (FU), the RS 
entry is cleared. Our initial working pipeline utilized a single-entry RS due to integration issues, 
but was later updated to a multi-entry version with entries reserved for specific functional units. 
We later describe this situation in the Challenges section of our report.   
 
2.3 Issue Stage 
 
The issue stage (ID) is responsible for selecting a ready instruction from the Reservation Station 
and issuing it to an available FU. The stage receives valid instructions from the RS, determines if 
a FU is available, and stalls in the case that no FU is available. The issue stage also informs the 
reservation station which entry has been issued. This element is further utilized in our 
multi-entry version of the pipeline, ensuring that multiple entries can store instructions to be 
executed.  
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2.4 Execute Stage 
 
The execute stage (EX) is responsible for all logical and arithmetic operations via the FUs. Our 
initial design utilized a single ALU and the Conditional Branch module for all computations, but 
was later expanded to include an additional ALU and an 8-stage Multiplier. In this expanded 
version of the execute stage, both ALUs were responsible for branches and arithmetic, except for 
multiplication. The Multiplier is capable of handling both signed and unsigned multiplication, 
and its pipelined nature allows a new input every cycle. When a unit finishes execution, the 
computed result is stored in a packet that is then sent to the complete stage and is eventually 
broadcast from the CDB. If the instruction is a memory operation, it is instead routed to the LSQ 
for handling. Our initial pipeline used a single signal to track whether the ALU was busy and 
required stalling, while the updated pipeline was able to track the status of all three units and 
determine which instructions were ready to send to the complete stage, with arbitration logic 
being used to prioritize multiplication instructions over ALU results when forwarding. The 
differences in the execute stage will further be discussed in our Challenges section of the report.  
 
2.5 Completion Stage 
 
The completion stage (CP) receives execution results from both our ALU pipeline and LSQ, and 
arbitrates which result gets broadcast via the Common Data Bus. The Common Data Bus (CDB) 
takes results from the functional units and gives priority to the LSQ when broadcasting results.  
 
 
2.5 Retire Stage 
 
The retire stage (RT) is responsible for committing completed instructions in program order, and 
writing back to the register file, as well as handling branch mispredictions and exceptions. The 
retire stage receives input from the ROB on a completed instruction and determines if the 
instruction is a memory operation or a branch instruction. If the instruction is a memory 
operation, the retire stage validates the instruction and coordinates with LSQ for final memory 
commit. If the instruction is a branch instruction, the retire stage determines if the instruction 
was a mispredict and asserts signals to ensure the pipeline is cleared. If the instruction is neither 
a branch nor a memory instruction, the retire stage writes the result to the register file and 
ensures the ROB and map table are cleared accordingly.  
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3. Advanced Features 

Beyond the baseline out-of-order pipeline, our design implemented a set of advanced 
architectural features intended to improve the performance and correctness of the processor. 
Below, we detail those features:  
 
3.1 Load-Store Queue  
 
Our Load-Store Queue (LSQ) was implemented to handle in-flight memory operations in the 
out-of-order pipeline. Our LSQ is unified and contains 8 entries, each storing either a load or a 
store. Furthermore, the LSQ was built with both blocking and non-blocking configurations, 
though issues with the non-blocking configuration led our team to complete testing with the 
blocking implementation. Using a circular queue structure similar to the ROB, each entry in the 
LSQ tracks the validity of its store data, the address, and retirement status for stores. Memory 
operations at the head of the queue are only retired once marked as ready. The LSQ regulates 
interaction with the D-Cache using a memory arbitration scheme, and our LSQ allows for 
speculative loads to post results to dependent instructions through the CDB. This speculation 
allows the execute stage to avoid stalling due to unresolved memory instructions, to improve 
CPI.  
 
3.2 D-Cache Improvements 
 
Our directly mapped, non-blocking D-Cache implementation was updated with a Write-back 
policy with dirty tracking to more effectively handle memory instructions with the LSQ. 
Incoming memory addresses are split into their tag, index, and offset fields, and the D-Cache can 
evict dirty lines upon mispredicts. Missed requests are tracked using the tag-to-address mapping 
table to avoid redundant loads and overwrites. If a cache line is marked as dirty and a new line 
maps to the same index, the dirty line is written back to memory before replacing it, and the 
D-Cache can use write-back upon halts and misses to ensure dirty data is flushed.  
 
3.3 Speculative Execution and Branch Misprediction Recovery  
 
Although our branch prediction implementation was disabled due to challenges upon program 
testing, the pipeline supports speculative execution with a misprediction recovery mechanism in 
the backend. Mispredicted branches are trapped by the retire stage, which checks predicted 
resolutions against expected ones. A Flush signal is sent to the pipeline upon misprediction, 
allowing the pipeline to recover and resume correct execution. 
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4. Attempted Features 

Due to time constraints, some advanced features were attempted but were unable to be fully 
integrated into our pipeline. However, we believe that the effort put into these features makes 
them worth mentioning, and we describe those features and future opportunities for development 
below.  
 
4.1 Fully Featured Branch Prediction Stack 
 
Beyond the initial branch prediction requirements, a more advanced branch prediction was 
attempted using a Branch Target Buffer (BTB), 2-bit saturating counters, and a Return Address 
Stack (RAS). This work can be found in our repository under the branch_predict branch. Due to 
the complexity of recovery logic and control path complexity with these advanced features lying 
outside our time constraints, this attempt was not integrated into the final pipeline. Future work 
could involve fully integrating the improved BTB and RAS, with more sophisticated branch 
prediction schemes and control flow handling. 
 
4.2 Z-Cache 
 
Beyond the I-Cache and D-Cache, our team had planned and built a Z-Cache module to improve 
the memory hierarchy of our model, via implementing a more associative, flexible, and 
cache-efficient data cache based on the Z-Cache architecture described in "The ZCache: 
Decoupling Ways and Associativity" by Sanchez and Kozyrakis (MICRO 2010). Although this 
module was not fully integrated due to time constraints and cache challenges during testing, it 
demonstrates our forward thinking and understanding of advanced architectures, and would be 
implemented in future updates to the design. The Cache would be designed with 8-way 
associativity, non-blocking, least recently used eviction policy, and a 3-way H3 universal hash 
family for decoupled set indexing, implemented in the h3hash module in our repository.  
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5. Challenges and Bugs 

During the final development and testing phase of the processor, many bugs and challenges were 
encountered. We discuss some of the challenges, bugs, and potential solutions and improvements 
below.  
 
5.1 Multi-Entry Reservation Station and Functional Unit Challenges 
 
During our final integration for testing, our team encountered challenges with issuing 
instructions due to signal mixups in our multi-entry reservation station and multiple functional 
units. Given the limited time for testing and integration challenges, our team decided to prioritize 
successful program completion over the inclusion of these features. However, shortly after 
submitting our final processor design, our team was successful in uncovering the source of the 
errors within our multi-entry model, namely a signal mixup within the stalling logic of the 
pipeline and a clock desync within the multiplication module. We were able to fix these errors 
and managed to complete some testing and analysis with this updated pipeline, which will be 
discussed later in the performance analysis section of the report.  
 
5.2 D-Cache Arbitration  
 
While integrating our I-Cache and D-Cache with the memory module, one challenge we 
encountered was the timing desync between modules. Namely, the memory module request and 
response were not available to be seen by both caches, resulting in challenges with arbitration 
and timing. The timing aspect was particularly challenging for our team, as while most module 
features within the caches were based on the positive edge, the arbitration required checking 
values on the negative clock edge, creating issues with several C programs due to this timing 
desync. In future implementations, we hope to resolve these issues to avoid errors in the memory 
due to simultaneous cache requests based on desync.  
 
5.3 D-Cache Write-back Halt Timing  
 
While our D-Cache structure had write-back implemented, halting occasionally caused issues 
within C programs due to write-back on dirty cache lines, causing errors. This resulted in some C 
programs with mismatched memory outputs, which is a bug we plan to fix in future 
implementations. 
 

 
7 



 

Overall, we believe that while our pipeline faced several problems, the work that we were able to 
complete indicates our ability to resolve these challenges in the future.  
 
6. Synthesis 

Our team used Synopsys to check that the processor was synthesizing properly while minimizing 
time spent on issues in synthesis. We implemented the following synthesis test strategy: 
Individual modules were tested for synthesis initially, with a test_synthesis.sh script created to 
test the modules. The script first checked whether the module passed its testbench and created its 
.out file. Then, the module was synthesized to compare the synthesized output against the 
testbench, and Make Slack was called to check timing violations.  
 
 
7. Performance Analysis 

For our testing strategy, our team began with the smaller module strategy described above, and 
several modules were grouped for testing. This included the ROB and RS, as well as the dispatch 
stage, ROB, and map table, using combinational test benches to observe their combined 
integration. With numerous debug wires and display statements used to dump outputs as well as 
data between units, our team was able to improve our ability to identify input mismatches or 
internal unit errors during integration testing. For smaller module tests, the VCS waveform 
compiler was used, but due to the large number of signals within the pipeline, we relied mostly 
on internal debug statements for larger integration tests. After our initial testing was successful, 
we adjusted the cycle timing to the required values to ensure proper functionality for programs. 
Below is an analysis of the initial version of our pipeline, as well as the testing for our updated 
version and a comparison of performance between the two versions. 
 

7.1 Initial Pipeline CPI and D-Cache Utilization  
 
Below is the analysis of the initial processor metrics, covering its CPI, D-Cache hit and miss 
rates, LSQ utilization, and ROB utilization. Notably, our CPI average was 10.3, with the best 
CPI being 3.8 on mult_no_lsq.s and its worst being 30 on halt.s. Notably, this average CPI was 
likely caused due to the large spikes in CPI for halt.s and matrix_mult.s. Figure 2. Covers the 
CPI results for every test program.   
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Additionally, we considered the correlation between CPI and D-Cache utilization as a likely 
source of outliers, and Figure 3 contains our findings on the D-Cache utilization per program. 
Notably, several of the higher spikes in CPI were correlated with D-Cache utilization, and we 
investigated this correlation by observing D-Cache hit and miss rates as shown in Figures 4 and 
5, respectively.  
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From figures 4 and 5, the mean was 51.5% hit rate, with the best being 99.8% in 
search_and_sort.s. We measured the D-Cache utilization based on the percentage of space in the 
D-Cache that was occupied by valid cache lines. A similar approach was used for measuring 
LSQ and ROB utilization, shown in Figures 6 and 7, respectively. 
 

 
From both Figures 6 and 7, mergsort.s had a notably high cache usage, which correlated with a 
higher CPI. This correlation indicates that the high usage of caches may have meant a large 
number of stalls due to both LSQ and ROB being full. In the future, we would further like to 
explore how adjusting the sizes of both LSQ and ROB will affect program results. 
 
7.2 Initial Pipeline CPI and D-Cache Utilization  
 
Additionally, we were able to obtain test data for several programs with the updated pipeline that 
utilized multiple functional units and multiple RS entries, and compared several metrics between 
the baseline pipeline and the updated pipeline. In Figure 8, we compared the CPI of both 
pipelines, as displayed below. For the updated pipeline, the average CPI was 10.6, with the best 
being 3.8 for evens_long.s and worst being 30 for halt.s. Notably, the height of halt.s’ CPI 
indicates that other spaces in the pipeline would need optimization to reduce CPI, outside of the 
functional units. However, we did notice several programs observed lower CPI, and several 
programs increased their CPI. This may be because the pipelined multiplier increases the number 
of cycles per multiplication. However, the pipelined multiplier’s benefit comes from its ability to 
reduce requirements for cycle time, and future tests will focus on observing the new optimal 
clock cycle time.  
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We further tested the LSQ and ROB usage for the updated pipeline and compared it against our 
baseline. The results of that testing are shown in Figures 9 and 10 below. In both cases, we 
observed higher utilization of the ROB and LSQ, confirming our hypothesis that the longer 
number of cycles used for the pipelined multiplier resulted in higher occupation of the LSQ and 
ROB, resulting in longer wait times for instructions and likely increasing CPI.  
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8. Future Work and Involvement 

8.1 Future Work 
 
While our team was not able to complete all the features we had initially planned for our design, 
we look forward to working on the following features and improvements in the future:  
 

●​ Fix .c program bugs: We hope to debug several issues occurring during the .c program 
testing, and aim to work on resolving some of the timing issues we identified that may be 
the source.  

 
●​ Full integration of attempted features: Our team worked hard on several advanced 

features, such as improved caches and advanced branch prediction methods. The features 
we described in the Attempted Features section of this report would be some of the first 
steps to take in improving the performance of our processor  

 
●​ Superscalar Implementation: At the beginning of this project, our team had hoped to 

complete a superscalar implementation of our design. We had built initial packets and 
stages with this feature in mind. However, the complexity of superscalar and the timing 
constraints we encountered required us to discard this feature. In the future, we would 
aim to implement a 2-way superscalar design into our processor and update our modules 
as needed.  

 
8.2 Involvement  
 
With a smaller team that had no prior SystemVerilog experience, we knew this project would be 
challenging. Yet during the timeline of our project, our team faced several unexpected challenges 
both inside and outside the scope of this course that further pushed our team to the limits of our 
capabilities. Nevertheless, our team persevered and built a design we are proud of, and truly put 
incredible effort into making this project happen. While it is difficult to describe the exact 
percentage of involvement on different features of the project due to several early modules being 
full group efforts, such as the ROB and RS, below is a brief detailing of the strengths each 
teammate contributed to:  
 

●​ Diwa Bhusal contributed significantly to the testing, integration, and synthesis checks for 
our design and made significant contributions to the ROB, map table, and reservation 
station.  
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●​ Mateo Nery made the primary designs of the complete, retire, fetch, and issue stages, as 
well as the ROB, RS, and implementation of multiple FUs into the execute stage, as well 
as updating the multiplier for unsigned and signed instructions.  

●​ William designed the LSQ and D-Cache and made major progress on the integration of 
the pipeline, especially with the multi-entry RS and multiple functional units. He 
contributed significantly to the debugging and testing of full pipeline programs.  

●​ Kuan Zhang made significant contributions to the execute and dispatch stage, and 
assisted significantly in helping integrate the full pipeline. 

 
9. Conclusions and Acknowledgements 

We have implemented a P6-style Out of out-of-order processor that handles RISC-V Instructions. 
We were able to pass all assembly cases and several .c programs, indicating that most of our 
design features were functional, but with some bugs still to be found. Additionally, our team at 
the time of submission was still debugging the multi-entry RS and multiple functional unit 
design, but was able to complete it shortly after submission and presented initial data findings 
above. In the future, we hope to continue debugging the design, implementing the attempted 
features, and adding new advanced features.  
 
We would like to express our gratitude to Professor Khan, Matthew Weingarten, and Michael 
Grieco for their guidance and support throughout the project.  
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